Planar Systems

| |


Table of Contents

#UCLA #Y1Q3 #Math33B

Planar Systems


Key Definitions

Characteristic polynomial - the determinant of the matrix, A, minus the identity, I, multiplied by λ

Planar Systems - usually homogenous linear systems with constant coefficients solved using linear algebra, specifically in 2x2 matrices below


Problem

Given a linear system:

x=AxandA=[abcd]

With possible IVP:

x(t0)=[ab]

Steps

  1. Find Eigenvalues using characteristic polynomial
  2. Find Eigenvectors using null(AλIn)
  3. General Solution:
    x(t;C1,C2)=C1eλ1tv1+C2eλ2tv2
  4. Plug in IVP and solve augmented matrix using general solution

General Solutions

Distinct Real Roots

Different real Eigenvalues

x(t)=C1eλ1tv1+C2eλ2tv2

Complex Conjugate Roots

Complex Eigenvalues

λ=a+bi
w=v1+v2i
λ¯=abi
w¯=v1v2i

Complex Version

x(t)=C1eλtw+C2eλ¯tw¯

Real Version

x(t)=C1eat(v1cosbtv2sinbt)+C2eat(v1sinbt+v2cosbt)

Double Real Roots

One Eigenvalue

Easy Case

2 linearly independent Eigenvectors Same as Distinct Real Roots case:

x(t)=C1eλtv1+C2eλtv2

Hard Case

1 Eigenvector Find v2 by setting up augmented matrix:

v2=[AλI|v1]

Then solution is given by:

x(t)=C1eλtv1+C2eλt(v2+tv1)