9 - Gen. Perms. Combs. and Binomial Coefficients - 6.3,6.7

ucla | MATH 61 | 2022-10-10T11:45


Table of Contents

Recall

Notes

Supplemental Definitions

  • binomial coefficients
    • (a+b)n=k=1n(a+b)
    • ankbk appears as a term in our expansion by choosing b from k of the factor (a+b) and choosing a from (n-k) of the factors (a+b)
    • ankbk chosen in (nk)=(nnk) ways

Examples

  • e.g. anagrams
    • how many ways to reorder “MISSISSIPPI”
    • 11!1!4!4!2!
  • e.g. RGB piles (thm. 2)
    • sps you have piles of RGB cubes w/ ≥ 8 in each color
    • how many ways to select 8 total cubes
      • t-elements: 8 cubes
      • k-elements: 3 colors
      • (8+3131)
  • e.g. non-neg solutions (thm. 2)
    • how many non-neg integer solutions to
    • x1+x2+x3+x4=29
    • t-elements = 4 x’s
    • k-elements = 29
    • (29+4141)
    • how many solutions if x1>0,x2>1,x3>2,x40
      • t-elts = 4
      • k-elts = 29 - 1 - 2 - 3 = 23
        • bc constraints for roots “Eats up” options
      • (23+4141)
  • e.g. binomial coefficients
    • (a+b)3=(a+b)(a+b)(a+b)
    • a3+3a2b+3ab2+b3
  • e.g. binom. thm.
    • expand (3x2y)4
    • a=3x,b=2y
    • (a+b)4=k=04(4k)a4kbk
  • e.g. proof of pascals triangle thm. (combinatorically)
    • show LHS & RHS are different ways to count the same set
    • LHS
      • (n+1k)
      • i.e. ways to choose k-subset from n+1 elements
    • RHS
      • case 1: element an+1 is in the k-subset
        • (nk1) options left
      • case 2: not in k-subset
        • (nk) options left
      • by addition principle (of distinct combinations)
      • (nk1)+(nk)
    • both LHS & RHS are computing cardinalities of the same set, they must be equal
  • e.g. proof of k=0n(nk)=2n using binom. thm
    • sps. a=1, b=1
    • binom. thm. suggests
    • k=0n(nk)(a)nk(b)k=(1+1)n=2n

Big Ideas

  • Theorem 1
    • suppose sequence S has n items with nt objects of type t
    • the number of permutations is:
    • n!1tnt!
  • Theorem 2
    • sps. x has t elts. the number of k=elt. selections from X, allowing repetitions, is
    • C(k+t1,t1)=C(k+t1,k)
    • (k+t1t1)=(k+t1k)
  • binomial theorem
    • for a,bR,nZ>0, then
    • (a+b)n=k=0n(nk)ankbk
  • pascals triangle

    • in levels of rows, enumerated i, starting with 1, where each level represents the monomials (a+b)i
  • pascals triangle theorem

    • for 1kn(n+1k)=(nk1)+(nk)

Lecture

📌

**SUMMARY
**