Continuous Bivariate Variables - lec. 21

ucla | MATH 170E | 2023-03-14T14:00


Table of Contents

Definitions


  • e.g. double integral for bounded area

  • e.g. E[XY]

    E[XY]=\RxyfX,Y(x,y) dxdy

Big Ideas


Double Integrals Review

Volume

Areas between functions (vert. & horiz.)

Continuous Bivariate Distributions

Joint PDF

P((X,Y)A)=AfX,Y(x,y) dxdy

  • Normalization

RfX,Y(x,y) dxdy=1

Marginal PDFs

$f_X(x)=\int_\R f_{X,Y}(x,y)\space dy\space$

P(a<Xb)=abfX(x) dx

Expected Value

E[g(X,Y)]=\Rg(x,y)fX,Y(x,y) dxdy

  • transformations

E[ag(X,Y)+bh(X,Y)]=aE[g(X,Y)]+bE[h(X,Y)]

Independence

fX,Y(x,y)=fX(x)fY(y)(x,y)\R2

  • then

E[g(X)h(Y)]=E[g(X)]E[h(X)]

Covariance and Correlation

cov(X,Y)=[(XE[X])(YE[Y])]=E[XY]E[X]E[Y]

ρ(X,Y)=cov(X,Y)var(X)var(Y)

  • Cauchy-Schwarz

1ρ1

Resources


📌

**SUMMARY
**