Discrete Bivariate Distribution - lec. 18

ucla | MATH 170E | 2023-02-23T17:54


Table of Contents

Definitions


Big Ideas


  • let X,Y be d.r.v. taking from SX,SY\sub\R and S=SX×SY=(x,y)\R2:xSX,ySy
  • e.g. 2 rand. nums from a set

Joint PMF:

$p_{X,Y}:S\to[0,1]$

  • Proposition

P((X,Y)A)=(x,y)ASpX,Y(x,y)

  • Normalization Condition

1=(x,y)S\sube\R2pX,Y(x,y)

Marginal PMF of X,Y

pX,pY:SX,SY[0,1](respectively)

$p_X(x)=P(X=x)=\sum_{y\in S_y}p_{X,Y}(x,y_j)\space$

  • Proposition

$\sum_{x\in S_X}p_X(x)=1\space$

Independence

  • r.vs X,Y are independent X=x, Y=y are independent (x,y)S

pX,Y(x,y)=pX(x)pY(y)(x,y)S

Means

E[XY]=(x,y)SxypXY(x,y)

E[X]=xSXxpX(x)E[Y]=ySYypY(y)

General Solution:

$g:S\to\R$

  • Transformations: a,b\Rg,h:S\R

E[ag(X,Y)+bh(X,Y)]=aE[g(X,Y)]+bE[h(X,Y)]

  • Comparison: gh(x,y)S

E[g(X,Y)]E[h(X,Y)]

  • Proposition: g,h:SX,SY\R

E[g(X)h(Y)]=E[g(X)]E[h(Y)]

Cauchy-Schwarz Inequality

$\mathbb E[XY]\le\sqrt{\mathbb E[X^2]\mathbb E[Y^2]}$
$\left\mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])]\right\le \sqrt{\mathbb E[(X-\mathbb E[X])^2]\mathbb E[(Y-\mathbb E[Y])^2]}\le \sqrt{\text{var(X)var(Y)}}$

Resources


📌

**SUMMARY
**