Discrete Bivariate Distribution - lec. 18
ucla | MATH 170E | 2023-02-23T17:54
Table of Contents
Definitions
Big Ideas
- let
be d.r.v. taking from and e.g. 2 rand. nums from a set
Joint PMF:
$p_{X,Y}:S\to[0,1]$
Proposition
- Normalization Condition
Marginal PMF of X,Y
$p_X(x)=P(X=x)=\sum_{y\in S_y}p_{X,Y}(x,y_j)\space$
- Proposition
$\sum_{x\in S_X}p_X(x)=1\space$
Independence
- r.vs
are independent are independent
Means
General Solution:
$g:S\to\R$
- Transformations:
- Comparison:
- Proposition:
Cauchy-Schwarz Inequality
$ | \mathbb E[XY] | \le\sqrt{\mathbb E[X^2]\mathbb E[Y^2]}$ |
$\left | \mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])]\right | \le \sqrt{\mathbb E[(X-\mathbb E[X])^2]\mathbb E[(Y-\mathbb E[Y])^2]}\le \sqrt{\text{var( |
Resources
📌
**SUMMARY
**