Discrete Random Variables - lec. 7

ucla | MATH 170E | 2023-02-01T10:23


Table of Contents

Definitions


Big Ideas


Random Variable (r.v.)

  • random variables are a function given a set S and prob. space (Ω,F,P):

X:ΩS

  • if xS and A\subeS

$\mathbb P(X=x):=\mathbb P({\omega\in\Omega:X(\omega)=x})$

  • the function’s diagram can be depicted as

Discrete Random Variables

  • a random variable is discrete if the range (output) is finite or countable i.e. one-to-one

X:ΩS\sube\N

Probability Mass Function (PMF) ( or Discrete Density)

  • PMF of r.v.s. function X:

$p_X:S\to[0,1]$

Cumulative Distribution Function (CDF)

  • oof X

FX:\R[0,1]

  • two r.v.s are identically distributed if they have the same CDF

XY

Visual for PMF vs CDF

Propositions

P(XA\sube\N)=xASpX(x)AS\subeS

FX(x)=yS, yxpX(y)yAS

P(a<Xb)=FX(b)FX(a)

Uniform Random Variables

  • r.v.s. X is uniformly distributed on 1,,m s.t.

XUniform(1,,m)

  • i.e. if it has PMF

pX(x)=1mx1,,m

  • this uniform random variable has CDF

FX(x)=

Geometric Random Variable

Number of trials until FIRST success

  • independent, identical Bernoulli trials with p0,1 probability
  • X is an r.v. taking values from S=1,,n

XGeometric(p)

  • PMF

pX(x)=p(1p)x1x1,

  • CDF

FX(x)=P(Xx)=1(1p)x

  • MGF

MX(t)=pet1(1p)ett<log(1p)

  • Mean

E[X]=1p

  • Variance

$\text{var(X)}=\frac{1-p}{p^2}\space$

Binomial Distribution

Number of success in fixed number of trials

  • A Binomial distribution is the distribution of n1 independent, identical Bernoulli trials that we write XBinomial(n,p) where n is the number of trials and p is the probability of each success (prob. of success of 1 trial)
  • then the PMF is

pX(x)=(nx)px(1p)nxx0,1,,n

  • CDF

Missing \end{cases}

  • then the MGF is

MX(t)=E[etX]=(1p+pet)nt\R

  • then the expected value (mean) is

E[X]=np

  • then the variance is

var(X)=np(1p)

Negative Binomial R.V.

Probability of nth success on rth trial

  • independent, identical Bernoulli trials with probability p0,1 of success
  • let r1 and let X be the d.r.v. the first trial on which we first achieve the rth success takes values from S=r,r+1,r+2,

$X\sim \text{Negative Binomial(r,p)}$

  • PMF

pX(x)=(x1r1)pr(1p)xrxS

  • CDF

Missing \end{cases}

  • Lemma for finding sum

(11s)r=x=r\infin(x1r1)sxr

  • MGF

MX(t)=(pet1(1p)et)rt<log(1p)

  • mean and variance

$\mathbb E[X]=\frac rp\space$

Poisson R.V.

  • there are λ>0 occurrences
  • let X be the number of occurrences in some time span and takes values from S=1,2, (assuming population is infinite)
  • Assuming time intervals are disjoint: (t1,t2],(t2,t3],,(tn,tn+1]then occurrences on each time interval are independent
  • If h=t2t1>0 is sufficiently small P(X=1 in (t1t2])=λh and converges rapidly to zero as h0 i.e. an approximate Poisson r.v.

XPoisson(λ)

  • PMF

pX(x)=eλλxx!

  • CDF

FX(x)=eλk=0xλkk!

  • Mean and Variance

$\mathbb E[X]=\lambda$

Resources


https://youtu.be/YXLVjCKVP7U

📌

**SUMMARY
**