Gamma Distribution - lec. 16

ucla | MATH 170E | 2023-02-16T21:26


Table of Contents

Definitions


Big Ideas


Gamma R.V.

  • given Poisson λ>0 and if α\Z1 let X be the time of the αth arrival
  • XGamma(α,θ) s.t. α=1XExp(θ=1λ)

PDF (@import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)α\Z1)

fX(x)=1θα(α1)!xα1ex/θx>0

fX(x)=1θαΓ(α)xα1ex/θx>0

Gamma function

Γ(α)=0\infinxα1ex dxα>0

Γ(1)=1

Γ(α)=(α1)Γ(α1)α>1

Γ(α)=(α1)!α1

MGF

MX(t)=1(1θt)αt<1θ

Mean and Variance

$\mathbb E[X]=\alpha\theta\space$

Resources


📌

**SUMMARY
**