MGF Technique - lec. 25

ucla | MATH 170E | 2023-03-19T01:59


Table of Contents

Definitions


Big Ideas


MGF Techniques

Prop. 5.13 - Linar combinations

Let X1,,Xn be a seq. of independent r.v.s and a1,\R

$Y=\sum_ja_jX_j\quad (\text{lin. comb.})\text{has}$

Uniqueness via MGF

For r.v.s. with MGFs sps. h>0 .t. t(h,h) we have

MX(t)=MY(t)X,Y independent

Same MGF → same distribution

Sample MGFs

For i.i.d. seq. of r.v.s. with common MGF M(t):

MSn(t)=[M(t)]nMXn(t)=[M(tn)]n

Limiting MGFs

Convergence in Distribution

For a seq. of r.v.s. (Xn)n\infin and another r.v. X

$X_n\to X\quad\text{in distribution as}\quad n\to\infin\text{if}$

Convergence in MGF

For a seq. of r.v.s. (Xn)n\infin and another r.v. X

For r.v.s. with MGFs sps. h>0 .t. t(h,h) we have

$M_{X_n}(t)\to M_{X}(T)\quad\text{as}\quad n\to\infin\text{then}$

Resources


📌

**SUMMARY
**