Normal Distribution - lec. 17

ucla | MATH 170E | 2023-02-16T21:57


Table of Contents

Definitions


Big Ideas


Central Limit Theorem

  • sps. X=X1++Xn s.t. XjBernoulli(p) s.t. E[X]=np and σX2=np(1p)

P(aXE[X]σXb)12πabex2/2 dxn\infin

Normal Distribution @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)XN(μ,σ2)

  • PDF

fX(x)=e(xμ)22σ22πσ2x\R

1=\infin\infin12πσ2e(tμ)22σ2 dt

  • MGF

MX(t)=eμt+12σ2t2t\R

  • Mean and Var

$\mathbb E[X]=\mu$

  • for general normal dist.

Z=XμσN(0,1)

P(Xx)=Φ(xμσ)=P(Zxμσ)

Standard Normal when @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)XN(0,1)

  • PDF

fX(x)=12πex2/2

  • Phi function

P(Xx)=Φ(x)=\infinx12πet2/2 dtXN(0,1)x0

Φ(x)=1Φ(x)x>0

  • Standard Normal Table

Resources


📌

**SUMMARY
**