Special Expectation - lec. 9
ucla | MATH 170E | 2023-01-30T11:58
Table of Contents
- Definitions
- Big Ideas
- @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)
moment of @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’) about @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’) - Variance
- Properties
- Moment Generating Function (MGF)
- @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)
- Resources
Definitions
Big Ideas
@import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’) moment of @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’) about @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)
- if
is a d.r.v. from countable set and , then for
- if
then the moment of is
Variance
- lt
be a d.r.v., the variance of is
- when the variance converges
- such that the standard deviation of
is
Properties
Transformations
- if
is a d.r.v and then
$\mathbb E[a\cdot X+b]=a\cdot\mathbb E[X]+b\space$
Variance as a sum
- if
is d.r.v
Uniform r.v.
- let
and
Bernoulli r.v.
Moment Generating Function (MGF)
- if
is a d.r.v then MGF of is
Bernoulli r.v.
- sps. MGF is defined and smooth for
for
$\frac{d^r}{dt^r}M_X(t)\Bigr | _{t=0}=\mathbb E[X^r]\quad \text{s.t.}\quad r\in\N$ |
$\frac d{dt}\log M_X\Bigr | _{t=0}=\mathbb E[X]\space$ |
Resources
📌
**SUMMARY
**