Special Expectation - lec. 9

ucla | MATH 170E | 2023-01-30T11:58


Table of Contents

Definitions


Big Ideas


@import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)rth moment of @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)X about @import url(‘https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css’)b

  • if X is a d.r.v. from countable set S\sube\R and b\R, then for r\N

E[(Xb)r]

  • if b=0 then the rth moment of X is E[Xr]

Variance

  • lt X be a d.r.v., the variance of X is

var(X)=E[(XE[X])2]

  • when the variance converges

σX2=var(X)

  • such that the standard deviation of X is

σX=var(X)

Properties

Transformations

  • if X is a d.r.v and a,b\R then

$\mathbb E[a\cdot X+b]=a\cdot\mathbb E[X]+b\space$

Variance as a sum

  • if X is d.r.v

var(X)=E[X2]E[X]2

Uniform r.v.

  • let m1 and XUniform({1,…,m})

var(X)=m2112

Bernoulli r.v.

var(X)=p(1p)

Moment Generating Function (MGF)

  • if X is a d.r.v then MGF of X is

MX(t)=E[etX]t\R

Bernoulli r.v.

MX(t)=1p+etpt\R

  • sps. MGF is defined and smooth for t(δ,δ) for δ>0
$\frac{d^r}{dt^r}M_X(t)\Bigr_{t=0}=\mathbb E[X^r]\quad \text{s.t.}\quad r\in\N$
$\frac d{dt}\log M_X\Bigr_{t=0}=\mathbb E[X]\space$

Resources


📌

**SUMMARY
**